a2 United States Patent

Natarajan et al.

US009195606B2

(10) Patent No.:
(45) Date of Patent:

US 9,195,606 B2
Nov. 24, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

DEAD BLOCK PREDICTORS FOR
COOPERATIVE EXECUTION IN THE LAST
LEVEL CACHE

GOGF 13/14 (2013.01); GOGF 12/084
(2013.01); GO6F 2212/62 (2013.01); GO6F
2212/69 (2013.01)

(58) Field of Classification Search

Applicant: Intel Corporation, Santa Clara, CA

Us)

None
See application file for complete search history.

Inventors: Ragavendra Natarajan, Mysore (IN); .
Jayesh Guar, Bangalore (IN); (56) References Cited
Nithiyanandan Bashyam, Bangalore U.S. PATENT DOCUMENTS
(IN); Mainak Chaudhuri, Bangalore
(IN); Sreenivas Subramoney, Bangalore 6,237,065 Bl 5/2001 Banerjia et al.
(IN) 7,024,545 Bl 4/2006 Zuraski et al.
(Continued)
Assignee: Intel Corporation, Santa Clara, CA
us) FOREIGN PATENT DOCUMENTS
Notice: Subject to any disclaimer, the term of this EP 1612683 A2 1/2006
patent is extended or adjusted under 35
U.S.C. 154(b) by 178 days. OTHER PUBLICATIONS
Gaur, Jayesh, Chaudhur, Mainak, and Subramoney, Sreenivas,
Appl. No.: 13/976,248 Bypass and Insertion Algorithms for Exclusive Last-Level Caches,
PCT Filed: Mar. 15. 2013 ISCA 11 Proceedings of the 38th annual International Symposium
’ T on Computer Architecture, Jun. 2011, pp. 81-92, ACM New York,
PCT No.: PCT/US2013/032622 NY, USA 2011.

§371 (o)D),

(Continued)

Primary Examiner — Farley Abad

Assistant Examiner — Richard B Franklin
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

ABSTRACT

A cache memory eviction method includes maintaining

thread-aware cache access data per cache block in a cache
memory, wherein the cache access data is indicative of a

number of times a cache block is accessed by a first thread,
associating a cache block with one of a plurality of bins based
on cache access data values of the cache block, and selecting
a cache block to evict from a plurality of cache block candi-

dates based, at least in part, upon the bins with which the

(2) Date: Jun. 26,2013
PCT Pub. No.: 'WO02014/143053
PCT Pub. Date: Sep. 18,2014

Prior Publication Data (57)
US 2014/0351524 Al Nov. 27,2014
Int. CL.
GO6F 12/00 (2006.01)
GO6F 12/08 (2006.01)

(Continued)

U.S. CL
CPC GO6F 12/0891 (2013.01); GO6F 12/0804

(2013.01); GO6F 12/0842 (2013.01); GO6F
12/126 (2013.01); GOGF 12/128 (2013.01);

cache block candidates are associated.

20 Claims, 9 Drawing Sheets

38—~y CORE DATA CACHE 208

301

LTA
302

J

uc [Tc | cs [AGE] sn | [TAG
HEHEHE A
[LA]

=

331

SHARE|
LOGIC

THREAD 1D{ 323

PN
M

I:ﬁ 24

nglc BN | 8

LOGIC
C
Locic 3%]
320

3

(Ue.To) [UVE [DEAD

1 M5

0]

35
N
337

G4 |

3

3
341342

LTA
@

uc [TC | ¢S
%4 | 30 | 380

AGE | SH TAG
=[5 (B[

. 368 SHARED CACHE 175

US 9,195,606 B2

2010/0011198 Al
2010/0064123 Al

1/2010
3/2010

Hooker et al.
Zuraski, JIr. et al.

* cited by examiner

Page 2
(51) Int.ClL 2010/0080221 Al 4/2010 Beatini et al.
GO6F 13/14 2006.01 2010/0153649 Al 6/2010 Lietal
() 2011/0087845 Al 4/2011 Burger et al.
GO6F 12/12 (2006.01) 2011/0145501 Al 6/2011 Steely, Jr. et al.
2012/0170654 Al 7/2012 Zhang et al.
(56) References Cited 2012/0254550 Al 10/2012 Gaur et al.
2013/0151779 Al 6/2013 Daly et al.
U.S. PATENT DOCUMENTS 2013/0151780 Al 6/2013 Daly et al.
2014/0032848 Al* 1/2014 Zhao et al. .. 711/130
- 2014/0189305 Al* 7/2014 Hickmann 712/205
7,039,765 B1* 5/2006 Wilkescccovvvrvvrnrnnnn. 711/133
8046538 Bl 10/2011 Stenstom, 2014/0281610 Al* 9/2014 Biswasetal. 713/322
8,065,487 B2* 11/2011 Kornegayetal. 711/133
8,407,421 B2 3/2013 Steely, Jr. OTHER PUBLICATIONS
%882;83%}‘;}‘8 ﬁ} 1;;3882 %?ixlearr;i;t al. International Search Report and Written Opinion, International
2006/0123405 Al 6/2006 O’Brien et al. Patent No. PCT/US2013/032622, mailed Dec. 26, 2013, 12 pages.

US 9,195,606 B2

Sheet 1 of 9

Nov. 24, 2015

U.S. Patent

B — vVl 9l
0% —
WYS AN 827 aaH - - -
« ~ X WOY HSYT4|| Q¥vOgAIM | | 3Snow
F43) 1zl ek ™
y3Ldvay < o> %N
olany ﬂ |
o ¥ITIOMINOD .
NEENE! 43}
anH mmwu_mm_ sng 0L HOSNGS
95/ ",
- 06T anH oIl 361 4
T04LNOD 41 e gel
HOMLIN — —— o117 | SOHdv¥D
V61 d-d 767 d-d
-~ A
TN
2zl) 5~ 2 |
. | 3Tdd | |IZTdd g Idd| | Tmdd || 128
N <zl HOW ¢V HOW
el 21} T<IT }-ccl
AHOWIW o1 - 77 ASONIN
— — 811 — —
VT V1T TV V1T
EN0) 200 00 200
Z0IT 40SS300Md T-0ZT H0SSF00Nd oot

U.S. Patent

Nov. 24, 2015 Sheet 2 of 9

CODE 12

0S 194

SENSOR API 195

RESUME MODULE 196

CONNECT MODULE 197

TOUCHSCREEN UI 198

US 9,195,606 B2

FIG. 1B

U.S. Patent Nov. 24, 2015 Sheet 3 of 9 US 9,195,606 B2
PROCESSOR 170
CORE 174-1 CORE 174-2
CORE INSTRUCTION CACHE CORE INSTRUCTION CACHE
2031 2032
FRONT-END FRONT-END
204-1 204-2
EXECUTION PIPES EXECUTION PIPES
206-1 206-2
CORE DATA CACHE CORE DATA CACHE
208-1 2082
MEMORY
CACHE
CONTZF;(ZLLER CONTROLLER
— 222
LAST LEVEL CACHE 175
BUS INTERFACE POWER
UNIT CONTROL UNIT
226 230

FIG. 2A

U.S. Patent Nov. 24, 2015 Sheet 4 of 9 US 9,195,606 B2
PROCESSING CORE 174
EXECUTION
ENGINE 205
FETCH / PRE-FETCH UNIT(S) 251
DECODE UNIT(S) 253
RENAME UNIT(S) 255
RESERVATION STATION /
™ SCHEDULING UNIT(S)
260
NEXT ADDRESS GENERATION UNIT(S) LINEAR ADDRESS TO
INSTRUCTION 262 MEMORY / CACHE
MOB/LB/SB UNIT(S) LOAD / STORE ISSUED
263 TO MEMORY CACHE
EXECUTION UNIT(S) LOAD DATA RETURNED
- 265 " FROM MEMORY CACHE

FIG. 2B

U.S. Patent

Nov. 24, 2015 Sheet 5 of 9 US 9,195,606 B2
301
318 g, CORE DATA CACHE 208
LTA | uc | 1¢ | cs | AGE | SH TAG ‘/
302 | 304 | 308 | 310 | 312 | 313 214 DATA 316
/
| PN
I W N o ~_331
/\
> SHARE uc' | a8
»| LOGIC LOGIC BIN
THREAD D323} LOGIC
322 TC |
LogicN326 rj L
320
_ /TN
335 | | [ucTc)JLVE [DEAD
U (0,0) < 345
T (0,1)
337
. Ga
—
-)
N341 342
4 y) 4
LTA | uc | 17¢ | cs | AGE | SH TAG
352 | 354 | 356 | 360 | 362 | 363 364 DATA 366
v— 368 SHARED CACHE 175

FIG. 3

U.S. Patent Nov. 24, 2015 Sheet 6 of 9 US 9,195,606 B2
410\ 412\ 414\ 416\
A L\ A L\
INCIDENT TAG /ADDRESS |BIN (UC, TC) TOD (0,0) LIVE TOD(0,0) DEAD | ... |TOD (N,M) LIVE
1 (2,1) 75
2 (1,1) 200
3 (1,2) 40
4 {1,0) 60
5 (0,1) 10
6
7
420\' 42%\
BIN LIVE BLOCK COUNT DEAD BLOCK COUNT
(1,1) 11 38
(1.2) 7 22
(21) 20 42
(N.M) 7 7

FIG. 4

U.S. Patent Nov. 24, 2015 Sheet 7 of 9 US 9,195,606 B2

200
/
DETECTING A CACHE LINE
EVENT
510

IDENTIFY LINE AS SHARED (EXCLUDE
FROM EVICTION POLICY, EXCLUDE
FROM CACHE LINE ACCESS DATA
GATHERING)
522

SHARED?
520

UPDATE THREAD-AWARE ACCESS
DATA FOR THIS LINE (UC, TC)
832

UPDATE THE (UC, TC) EVICTION
DATABASE
542

DETERMINE A RELATIONSHIP BETWEEN (UC, TC)
VALUES AND EVICTIONS
550

4

Y

FIG. 5 MODIFY THE LLC EVICTION POLICY BASED, AT
LEAST IN PART, ON THE RELATIONSHIP
560

U.S. Patent Nov. 24, 2015 Sheet 8 of 9 US 9,195,606 B2

600

MAINTAIN A LLC EVICTION POLICY BASED, AT LEAST IN PART, ON A
RELATIONSHIP BETWEEN (UC, TC) VALUES AND EVICTIONS
610

ASSIGN HIGHER PRIORITY TO SHARED BLOCKS THAN PRIVATE BLOCKS
620

CHOOSE LLC EVICTION VICTIMS USING THE EVICTION POLICY
630

Y

MAKE DECISIONS FOR PRIVATE BLOCKS USING THREAD AWARE DEAD BLOCK
PREDICTORS
640

FIG. 6

U.S. Patent

Nov. 24, 2015

STORAGE MEDIUM 710

SOFTWARE
SIMULATION
712

HARDWARE
MODEL (HDL
OR
PHYSICAL
DESIGN
DATA)
714

Sheet 9 of 9

DR

FIG. 7

US 9,195,606 B2

720

O

730
j

AVAVAVES

w0)

US 9,195,606 B2

1
DEAD BLOCK PREDICTORS FOR
COOPERATIVE EXECUTION IN THE LAST
LEVEL CACHE

TECHNICAL FIELD

Embodiments described herein generally relate to the field
of microprocessors and, more particularly, microprocessor
cache memory policies for evicting cache lines.

BACKGROUND

Multicore processors and multi-threaded, cooperative
workloads may exhibit cache access patterns that differ from
cache access characteristics of single threaded execution
environments. Methods for identifying dead blocks in a
single core processor, however, may not extend well to a
multicore environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B illustrate a multi-processor system used
in conjunction with at least one embodiment;

FIG. 2A illustrates a processor used in conjunction with at
least one embodiment;

FIG. 2B illustrates a processor used in conjunction with at
least one embodiment;

FIG. 3 illustrates a cache memory subsystem used in con-
junction with at least one embodiment;

FIG. 4 illustrates a dead block database used in conjunction
with at least one embodiment;

FIG. 5 illustrates one embodiment of a cache block evic-
tion method used in conjunction with at least one embodi-
ment;

FIG. 6 illustrates one embodiment of a cache method; and

FIG. 7 illustrates a representation for simulation, emula-
tion and fabrication of a design implementing the disclosed
techniques.

DESCRIPTION OF EMBODIMENTS

Some embodiments pertain to the use of a thread-aware
dead block predictor (TA-DBP) in a shared cache memory. In
at least one embodiment, a method for predicting dead blocks
recognizes distinctions between shared data and unshared
data. In at least one embodiment, a replacement policy
emphasizes the replacement of cache lines, referred to herein
simply as blocks, representing unshared data and preferen-
tially preserves shared data blocks.

In some embodiments, a TA-DBP algorithm classifies
cache blocks in a core cache or private cache using a pair of
parameters referred to herein as use count (UC) and trip count
(TC) values. In at least one embodiment, the UC parameter
for a cache block indicates the number of hits seen by the
cache block while it resides in the core cache. In at least one
embodiment, the TC parameter indicates the number of times
the block was recalled from a higher level cache, referred to
herein as the shared cache, to the core cache.

In at least one embodiment, a multi-core processor is oper-
ated according to a not recently used (NRU) replacement
policy, pseudo-NRU policy, a not recently filled (NRF)
policy, or another suitable replacement policy, and dead block
counts and live block counts are maintained for each (UC,
TC) pair. Some embodiments increment a dead block count
associated with a (UC, TC) pair when a (UC, TC) cache
block, i.e., a cache having the applicable values of UC and
TC, is evicted from the shared cache. In these embodiments,

10

25

40

45

2

all other instances of blocks possessing the (UC, TC) values
represent live blocks. After sufficient dead block and live
block data per tuple has been gathered, embodiments may
access, review, or analyze the dead block data and live block
data to identify any correlation or other relationship between
dead blocks and live blocks. In at least one embodiment, dead
block predictions may be based at least in part on any corre-
lation or relationship identified. These dead block predictions
may be used, in some embodiments, to prioritize eviction
policies. In at least one embodiment, dead block predictions
influence eviction policy by determining an age attribute
when a block is allocated in the shared cache and leveraging
an existing recency-based protocol to make the final eviction
determination.

In at least one embodiment, access patterns associated with
any data identified as being shared data, i.e., data accessed by
two or more threads of the multicore processor during the
cache memory life cycle of the data, are excluded or segre-
gated from access patterns associated with unshared data.
These embodiments are referred to herein as thread-aware
embodiments. The cache memory lifecycle, also sometimes
referred to herein as a cache memory tenure, refers to the
interval when the cache block is first filled in one of the caches
from memory until the time the block is evicted from the
shared cache. During the cache memory lifecycle, a block
may move between the shared cache and one or more core
data caches. Death predictions may be made each time a
block is allocated in the shared cache by examining the dead
and live block counters of the (TC, UC) bin to which an
unshared block is categorized. In at least one embodiment,
dead and live block counters for various (TC, UC) tuples may
be maintained for each core separately.

In at least one embodiment, a processor includes a plurality
of processing cores and a cache memory subsystem. In at
least one embodiment, the cache memory subsystem includes
a plurality of core caches, where each of the core caches
corresponds to one of the processing cores. The cache
memory subsystem may further include a shared cache com-
mon to each of the processing cores. The cache memory
subsystem, in at least one embodiment, includes TC logic and
UC logic. The TC logic may increment a thread-aware TC for
a block recalled from the shared cache to the first core cache.
The UC logic may increment a UC for a block responsive to
each access of the block in the first core cache. In at least one
embodiment, the cache memory subsystem includes shared
block logic to set a shared block bit for a block accessed by
multiple core caches. Bin logic within the cache memory
subsystem may maintain live block counts and dead block
counts for each bin. In at least one embodiment, a bin corre-
sponds to a (UC, TC) pair. The live block count may indicate
the number of valid, unshared blocks associated with the
corresponding bin. The dead block count may indicate the
number of blocks evicted from a corresponding bin. In at least
one embodiment, the cache memory subsystem may include
eviction logic to select a shared cache block to evict from a
plurality of eviction candidates, based on at least one of: TC
values, live block counts, and dead block counts.

Insome embodiments, the bin logic increments a live block
count for a first bin and decrements a live block count for a
second bin when it detects a (UC, TC) pair changing from a
first combination to a second combination. The bin logic may
further increment a dead block count for a third bin when an
eviction of a cache block associated with the third bin is
detected.

In some embodiments, the cache memory subsystem may
include last-to-allocate (LTA) logic to set LTA bits for a block
to indicate the last thread to allocate the block in the shared

US 9,195,606 B2

3

cache. In at least one embodiment, the LTA field identifies the
first thread as the last thread to allocate the block. The shared
block logic may set a shared block bit responsive to detecting
that the LTA field identifies a second thread when the first
thread has most recently allocated the block. In at least one
embodiment, the cache memory subsystem includes age
logic to set the maximum value for an age field of a block in
response to setting the shared block bit for that block so that
shared blocks are preferentially maintained in the shared
cache with respect to unshared or private blocks. In some
embodiments, the selection of a block to evict may include
consideration of the age field.

In at least one embodiment, a cache memory eviction
method includes maintaining thread-aware cache access data
per cache block in a cache memory. The cache access data
may be indicative of a number of times the cache block is
accessed by a first thread. In some embodiments, access by a
first thread corresponds to access by a first core cache. In at
least one embodiment, the cache memory eviction method
includes associating a cache block with one of many cache
access bins, referred to herein as bins, based on cache access
data values applicable to the cache block. In some embodi-
ments, the cache memory eviction method includes selecting
a cache block to evict from multiple candidates based at least
in part upon the cache access bins in which a cache block
candidate resides.

Insome embodiments, the cache memory includes a shared
cache within a cache memory hierarchy. The cache access
data may include TC data indicating the number of times a
block is forwarded from a shared cache to a first core cache.
Insome embodiments, the cache access data may also include
UC data indicating the number of times a block is accessed by
a first thread while residing in the first core cache. In some
embodiments, the cache access bins that are maintained
include a bin for each unique (UC, TC) pair. In some embodi-
ments, the method includes maintaining a database of live
block counts and dead block counts for each bin. In these
embodiments, selecting the cache block to evict may be based
at least in part upon a live block count and a dead block count
for the particular cache access. In some embodiments, the
method may further include maintaining a shared block status
per cache block, where the shared block status indicates
whether a second thread has access to the cache block. In
these embodiments, the method may further include exclud-
ing shared cache blocks from the cache access to bins once a
block is identified as a shared cache block. In these embodi-
ments, the method may include excluding, from the live and
dead block counts, shared cache blocks. In these embodi-
ments, the selection of a cache block to evict may exclude
from consideration any cache block candidate that is a shared
block. In at least one embodiment, maintaining shared blocks
status includes maintaining [TA data indicating the last
thread to allocate a block. By maintaining L'TA data, embodi-
ments of the method may include, as shared blocks, blocks
that are accessed by multiple threads, but which are never
valid in multiple cores at any point in time. In addition to these
one-at-a-time shared blocks, the shared blocks may include
any blocks that have a shared block status under the MESI
protocol or any other shared coherency status. In some
embodiments, detection of a shared block is translated into an
eviction policy preference by assigning the shared block a
maximum age.

In these embodiments, the age field may be used to arbi-
trate between two candidates sharing common thread-aware
block prediction data characteristics.

In at least one embodiment, a computer system includes a
processor with a core region that has a plurality of processing

10

15

20

25

30

35

40

45

55

60

65

4

cores; where each processing core includes a core cache and
the processor as a whole includes a shared cache that is shared
among the core cache. A memory controller is integrated into
a non-core region of the processor and an I/O hub is con-
nected to the processor in some embodiments. In at least one
embodiment, the processor may include dead block predic-
tion logic to maintain shared block data indicating when a
block is shared, maintain cache access data indicating how
many times an unshared block is accessed, associate unshared
blocks with cache access bins based on the cache access data
applicable to a block, maintain live block counts for each
cache accessibility, and select blocks to evict based on the
cache access data, the live block counts, and the dead block
counts. In at least one embodiment, the shared cache is a set
associative, multiple way cache, and the selection of any
blocks to evict includes selecting the block to evict from the
group of blocks that share the same set.

In the following description, details are set forth in con-
junction with embodiments to facilitate discussion of the
disclosed subject matter. It should be apparent to a person of
ordinary skill in the field, however, that the disclosed embodi-
ments are exemplary and not exhaustive of all possible
embodiments.

Throughout this disclosure, a hyphenated form of a refer-
ence numeral refers to a specific instance of an element and
the un-hyphenated form of the reference numeral refers to the
element generically or collectively. Thus, widget 12-1 refers
to an instance of a widget class, which may be referred to
collectively as widgets 12 and any one of which may be
referred to generically as a widget 12.

Embodiments may be implemented in many different sys-
tem types and platforms. FIGS. 1A and 1B illustrate a multi-
processor system used in conjunction with at least one
embodiment. In at least one embodiment, system 100 is a
multi-processor system that include a first processor 170-1
and a second processor 170-2. Although some embodiments
include two processors 170, other embodiments may include
more or fewer processors. In at least one embodiment, pro-
cessors 170 include a core region 178 and an integration
region 180. In some embodiments, core region 178 includes
one or more processing cores 174. In some embodiments,
integration region 180 includes a memory controller hub
(MCH) 172, a shared cache 175, sometimes referred to as a
last level cache (LLC) 175, a processor-hub point-to-point
interface 176, and a processor-processor point-to-point inter-
face 177.

In at least one embodiment, processing cores 174 may each
include hardware and firmware resources (not depicted) to
support an execution pipeline. In some embodiments, these
resources may include a cache memory hierarchy, which may
include a dedicated level one (I.1) instruction cache, a dedi-
cated L1 data cache, a level 2 (L.2) data/instruction cache, or
a combination thereof, prefetch logic and buffers, branch
prediction logic, decode logic, a register file, various parallel
execution resources including arithmetic logic units, floating
point units, load/store units, address generation units, a data
cache, and so forth.

In at least one embodiment, MCH 172 supports bidirec-
tional transfer of data between a processor 170 and a system
memory 132 via a memory interconnect 182. In some
embodiments, system memory 132 may be a double-data rate
(DDR) type dynamic random-access memory (DRAM) while
memory interconnect 182 and MCH 172 may comply with a
DDR interface specification. In some embodiments, system
memory 132-1 may represent a bank of memory interfaces (or
slots) that may be populated with corresponding memory
circuits for a desired DRAM capacity.

US 9,195,606 B2

5

In some embodiments, each processor 170 includes an
MCH 172 to communicate with a portion of system memory
132 that is local to processor 170. In at least one embodiment,
system memory 132-1 is local to processor 170-1 and repre-
sents a portion of the system memory 132 as a whole. In at
least one embodiment, system 100 is a distributed memory
multi-processor system in which each processor 170 can
access each portion of system memory 132, whether local or
not. While local accesses may have lower latency, accesses to
non-local portions of system memory 132 are permitted in
some embodiments.

In at least one embodiment, each processor 170 also
includes a point-to-point interface 177 that supports commu-
nication of information with a point-to-point interface 177 of
one of the other processors 170 via an inter-processor point-
to-point interconnection 151. In some embodiments, proces-
sor-hub point-to-point interconnections 152 and processor-
processor point-to-point interconnections 151 are distinct
instances of a common set of interconnections. In other
embodiments, point-to-point interconnections 152 may differ
from point-to-point interconnections 151.

In some embodiments, processors 170 include point-to-
point interfaces 176 to communicate via point-to-point inter-
connect 152 with a point-to-point interface 194 of an I/O hub
190. In at least one embodiment, I/O hub 190 includes a
graphics interface 192 to support bidirectional communica-
tion of data with a graphics adapter 138 via a graphics inter-
connection 116, which may be implemented as a high speed
serial bus, e.g., a peripheral components interface express
(PCle) bus or another suitable bus.

Insome embodiments, I/O hub 190 also communicates, via
an interface 196 and a corresponding interconnection 156,
with a bus bridge hub 118 that supports various bus protocols
for different types of I/O devices or peripheral devices. In at
least one embodiment, bus bridge hub 118 supports a network
interface controller (NIC) 130 that implements a packet-
switched network communication protocol (e.g., Gigabit
Ethernet), a sound card or audio adapter 133, and a low
bandwidth bus 122 (e.g., low pin count (LPC), 12C, Industry
Standard Architecture (ISA)), to support legacy interfaces
referred to herein as desktop 110 interfaces that might include
interfaces for a keyboard, mouse, serial port, parallel port, and
a removable media drive. In some embodiments, low band-
width bus 122 further includes an interface for a nonvolatile
memory (NVM) device such as flash read only memory
(ROM) 126, and other low bandwidth I/O devices (e.g., key-
board 124, mouse 125), and a storage protocol bus 121 (e.g.,
serial AT attachment (SATA), small computer system inter-
face (SCSI)), to support persistent storage devices including
conventional magnetic core hard disk drive (HDD) 128. In
some embodiments, HDD 128 is illustrated as including store
code 129, which may represent processor executable instruc-
tions including operating system instructions, application
program instructions, and so forth, that, when executed by the
processor, cause the processor to perform operations illus-
trated herein.

In at least one embodiment, system 100 also includes a
non-volatile random access memory (NVRAM) 140, which
may include a solid state drive, a phase change RAM, or
another suitable device, and a peripheral bus 120 (e.g., USB,
12C, PCI, PCle, Bluetooth) to support various peripheral
devices including a sensor 112 and a touchscreen controller
113. Although specific instances of communication busses
and bus targets have been illustrated and described, other
embodiments may employ different communication busses
and different target devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, system 100 includes an operating
system 198 that may be entirely or partially stored in HDD
128. In some embodiments, operating system 140 may
include various modules, application programming inter-
faces, and the like that expose to varying degrees various
hardware and software features of system 100. In at least one
embodiment, system 100 includes a sensor application pro-
gramming interface (API) 142, a resume module 144, a con-
nect module 146, and a touchscreen user interface 148.

In some embodiments, sensor API 142 provides applica-
tion program access to one or more sensors (not depicted) that
may be included in system 100. In some embodiments, sen-
sors that system 100 might have include an accelerometer, a
global positioning system (GPS) device, a gyro meter, an
inclinometer, and an ambient light sensor. In at least one
embodiment, resume module 144 may be implemented as
software that, when executed, performs operations for reduc-
ing latency when transitioning system 100 from a power
conservation state to an operating state. Resume module 144
may, in some embodiments, work in conjunction with the
solid state drive (SSD) 150 to reduce the amount of SSD
storage required when system 100 enters a power conserva-
tion mode. Resume module 144 may, in some embodiments,
flush standby and temporary memory pages before transition-
ing to a sleep mode. In some embodiments, by reducing the
amount of system memory space that system 100 is required
to preserve upon entering a low power state, resume module
144 beneficially reduces the amount of time required to per-
form the transition from the low power state to an operating
state. In some embodiments, connect module 146 may
include software instructions that, when executed, perform
complementary functions for conserving power while reduc-
ing the amount of latency or delay associated with traditional
“wake up” sequences. In some embodiments, connect mod-
ule 146 may periodically update certain “dynamic” applica-
tions including email and social network applications, so that,
when system 100 wakes from a low power mode, the appli-
cations that are often most likely to require refreshing are up
to date. In at least one embodiment, touchscreen user inter-
face 148 supports a touchscreen controller 114 that enables
user input via touchscreens traditionally reserved for hand-
held applications. In at least one embodiment, the inclusion of
touchscreen support in conjunction with support for commu-
nication devices enable system 100 to provide features tradi-
tionally found in dedicated tablet devices as well as features
found in dedicated laptop and desktop type systems.

FIG. 2A illustrates a processor used in conjunction with at
least one embodiment. In at least one embodiment, processor
170 includes a core region 178 and an integration region 180.
In some embodiments, core region 178 includes processing
cores 174-1 and 174-2. Other embodiments of processor 170
may include more or fewer processing cores 174.

In atleast one embodiment, processing cores 174 include a
core instruction cache 203, a front-end 204, execution pipes
206, and a core data cache 208. In some embodiments, front-
end 204 monitors an instruction pointer and, based on predic-
tions regarding program flow, fetches or prefetches instruc-
tions from core instruction cache 203 and issues instructions
to execution pipes 206. In some embodiments, execution
pipes 206 include multiple parallel pipelines including one or
more floating point pipelines, one or more integer arithmetic
logic unit pipelines, one or more branch pipelines, and one or
more memory access pipelines, also referred to herein as
load/store pipelines. In some embodiments, execution pipes
206 decode instructions, retrieve operands required to per-
form instructions, and may generate micro code to process the
instructions from core instruction cache 203, may route the

US 9,195,606 B2

7

instructions through the appropriate execution pipeline, and
may store any results. In at least one embodiment, execution
pipes 206 include a register file that may support register
renaming, speculative execution, and out-of-order execution
of instructions.

In some embodiments, integration region 180 includes an
LLC 175 and cache control logic 222. In this embodiment,
LLC 175 is a shared cache that is shared among all of pro-
cessing cores 174 of processor 170. In some embodiments, as
suggested by its name, LL.C 175 represents, from the perspec-
tive of processor 170, the last available hierarchical tier of
cache memory. In at least one embodiment, if a memory
access instruction that is presented to LLLC 175 generates a
cache miss, the requested data must be retrieved from system
memory 132.

In at least one embodiment, processing core 174 and/or
integration region 180 may include one or more levels of a
cache hierarchy between core caches 203, 208 and LL.C 175.
In at least one embodiment, processing core 174 includes a
cache memory intermediate between core caches 203, 208
and LLC 175. Processing core 174 may include, in some
embodiments, an intermediate tier cache memory (not
shown) hierarchically located between core caches 203, 208
and LLC 175. In at least one embodiment, each of the cache
memories of processing core 174 may have a unique archi-
tectural configuration. In at least one embodiment, core data
cache 208 and LLC 175 are both multiple-way, set associative
caches. In some embodiments, LLC 175 is inclusive with
respect to core data cache 208 while, in other embodiments,
LLC 175 may be non-inclusive with respect to core data
cache 208.

In some embodiments, cache control logic 222 controls
access to the cache memories, enforces a coherency policy,
implements a replacement policy, and monitors memory
access requests from external agents, e.g., other processors
170 or I/O devices. In at least one embodiment, LL.C 175 and
core caches 203, 208 comply with an MESI protocol or a
modified MESI protocol. The four states of the MESI proto-
col are described in Table 1.

TABLE 1

Description of Cache Block States in the MESI Protocol

MESI State Description

The cache block contains valid data that is
modified from the system memory copy of the data.
Also referred to as a ‘dirty’ block.

The block contains valid data that is the same as
the system memory copy of the data. Also indicates
that no other cache has a block allocated to this
same system memory address. Also referred to as a
‘clean’ block.

The block contains valid and clean data, but one

or more other caches have a block allocated to this
same system memory address.

The block is not currently allocated and is
available for storing a new entry.

MODIFIED

EXCLUSIVE

SHARED

INVALID

A modified MESI protocol could include, in some embodi-
ments, an additional state, the “F” state, identifying one of a
plurality of “S” state lines, where the “F” state block is des-
ignated as the block to forward the applicable data should an
additional request for the data be received, e.g., from a pro-
cessor that does not have the data.

In at least one embodiment, integration region 180 of pro-
cessor 170 also includes power management unit 230 to con-
trol power provided to the various resources of processor 170.
In some embodiments, power management unit 230 provides

10

15

20

25

30

35

40

45

50

55

60

65

8

unique power supply levels to core region 178 and integration
region 180. In other embodiments, power management unit
230 may be further operable to provide unique power supply
levels to each processing core 174 and/or provide clock sig-
nals at unique frequencies to processing cores 174. In addi-
tion, in some embodiments, power management unit 230 may
implement various power states for processor 170 and define
events that produce power state transitions.

In some embodiments, integration region 180 includes
graphics accelerator 173 to support low latency, high band-
width communication with a display device (not depicted). In
at least one embodiment, graphics accelerator 173 may be
integrated into processor 170 which represents an alternative
to embodiments in which communication with graphics
adapter 138 is implemented in the 1/O hub 190.

In at least one embodiment, integration region 180 includes
an [/O interface 188 to support communication with one or
more chipset devices, discreet bus interfaces, and/or indi-
vidual I/0O devices. In some embodiments, I/O interface 188
provides one or more point-to-point interfaces such as inter-
faces 176 and 177. In other embodiments, 1/O interface 188
may provide an interface to a shared bus to which one or more
other processors 170 may also connect.

FIG. 2B illustrates an out-of-order execution core. In one
embodiment, execution core 205 includes all or some of the
elements of front end 204 and execution engine 206 of pro-
cessing core 274. In at least one embodiment, pending loads
may be speculatively issued to a memory address before other
older pending store operations according to a prediction algo-
rithm, such as a hashing function. In at least one embodiment,
execution core 205 includes a fetch/prefetch unit 251, a
decoder unit 253, one or more rename Uunits 255 to assign
registers to appropriate instructions or micro-ops, and one or
more scheduling/reservation station units 260 to store micro-
ops corresponding to load and store operations (e.g., STA
micro-ops) until their corresponding target addresses source
operands are determined. In some embodiments an address
generation unit 262 to generate the target linear addresses
corresponding to the load and stores, and an execution unit
265 to generate a pointer to the next operation to be dis-
patched from the scheduler/reservation stations 260 based on
load data returned by dispatching load operations to memory/
cache are also included. In at least one embodiment, a
memory order buffer (MOB) 263, which may contain load
and store buffers to store loads and stores in program order
and to check for dependencies/conflicts between the loads
and stores is included. In one embodiment, loads may be
issued to memory/cache before older stores are issued to
memory/cache without waiting to determine whether the
loads are dependent upon or otherwise conflict with older
pending stores. In other embodiments, processor 270 is an
in-order processor.

FIG. 3 illustrates a cache memory subsystem used in con-
junction with at least one embodiment. In at least one embodi-
ment, cache memory subsystem 300 includes dead block
predictor logic 320. In some embodiments, dead block pre-
dictor logic 320 includes share logic 322, UC logic 324, TC
logic 326, and bin logic 328. The FIG. 3 illustration of dead
block predictor logic 320 does not include detail of any
address decoding associated with the illustrated logic. In
some embodiments, instances of dead block predictor logic
320 may be included with each set or entry of a cache
memory. In other embodiments, the signals from the elements
of dead block predictor logic 320 are routed through address
decoding circuitry (not depicted) to the appropriate cache
block. This routing of share logic information, UC logic

US 9,195,606 B2

9

signals, and TC signals is not illustrated in an effort to main-
tain clarity of focus on the block features.

In at least one embodiment, a cache block 301 from core
data cache 208 and a cache block 351 from shared cache 175
are included. In some embodiments, core data cache block
301 includes cache data 316, an associated cache tag 314, and
block status indicators 318. In an analogous manner, in some
embodiments, cache block 351 in shared cache 175 includes
cache data 366, a corresponding cache tag 364, and block
status indicators 368.

In at least one embodiment, block status indicators 318
include an LTA bit 302, a UC field 304, a TC field 306, a
coherency state (CS) field 310, a recently used field, referred
to herein simply as age field 312, and a shared bit 313. Simi-
larly, in some embodiments, the block status indicators 368 of
cache block 351 include an LTA bit 352, a UC field 354, a TC
field 356, a CS field 360, a recently used field, referred to
herein simply as age field 362, and a shared bit 363. Although
in some embodiments, core cache blocks and shared cache
blocks having substantially the same set of block status indi-
cators are included, the core cache block status indicators 318
may differ from the shared cache block status indicators 368
in other embodiments.

In some embodiments, LTA bit 302 indicates the last thread
to allocate the block in the shared cache. In at least one
embodiment, although LTA bit 302 may be included in the
block status indicators 318 of core cache block 301, the value
of LTA bit 302 is determined at the time a block is evicted
from core data cache 208 and allocated in a non-inclusive
cache, or updated in an inclusive cache. In at least one
embodiment, in which the LTA bit 302 is retained when the
block is recalled to core data cache 208, accommodates
embodiments in which shared cache 175 is exclusive of or
noninclusive of core data cache 208. If shared cache (LLC)
175 is inclusive of core data cache 208, it may be permissible
to omit LTA bit 302 from the block status indicators 318 of
core data cache 208.

In at least one embodiment, the LTA information, whether
referring to LTA bit 302 in core cache block 301 or LTA bit
352 in shared cache 175, is useful in conjunction with shared
bit 313 to indicate whether the corresponding block has been
accessed by more than one thread during its cache memory
lifecycle. In some embodiments, during its cache memory
lifecycle, a block may move between shared cache 175 and
core data cache 208. If a core data cache block is recalled from
shared cache 175 by a first thread and then gets evicted from
core data cache 208 back to shared cache 175, the block may,
in some embodiments, be recalled by a second thread later. In
this situation, the TC may, in at least one embodiment, indi-
cate two distinct trips from shared cache 175 to core data
cache 208, but the information would be inaccurate with
respectto any single thread. In at least one of the thread-aware
embodiments illustrated herein, the detection of the block as
a shared block through the use of LTA bit 352 and/or LTA bit
302 would result.

In at least one embodiment, when the block was evicted
from core data cache 208 of a first processing core, LTA bit
352 in shared cache 175 was written with a value indicating
the first processing core as the core that allocated the block in
shared cache 175, i.e., the core that last evicted the block. In
some embodiments, as illustrated in FIG. 3, share logic 322
receives thread 1D signal 323 from an execution pipe 206 or
other source indicating the thread that is currently executing.
In some embodiments, thread ID information may be used to
record last to allocate information in LTA bit 302. In embodi-
ments where thereisa 1:1 correspondence between executing

10

20

40

45

55

10

threads and processing cores, share logic 322 may simply
record an identifying number of the core data cache 208 in
lieu of a thread indicator.

In at least one embodiment, share logic 322 also receives
CS 310. In some embodiments, when an eviction occurs, CS
310 transitions to invalid and share logic 322 may record
thread ID signal 323 or processor core information (not
depicted) in UC 304 or provide the information to shared
cache 175 for storage in LTA bit 352. In addition, in some
embodiments, share logic 322 receives LTA bit 352 from
shared cache 175. From this information, share logic 322
may, in some embodiments, determine that the previous value
of LTA bit 352 differs from the thread ID signal 323 of the
currently executing thread, or the core data cache 208 allo-
cating the block in shared cache 175 and asserts the shared bit
313 in core data cache 208 as well as the shared bit 363 in
shared cache 175. In these embodiments, a block is perma-
nently identified as a shared block, via CS bit 310 in cache
block 301 or CS 360 in shared block 351 when it is deter-
mined that two different core caches, i.e., two or more differ-
ent threads, have accessed the block in their respective cores.
Thus, some embodiments may identify a block as shared even
if that block was never valid in more than one core cache at
any given moment in its cache memory lifecycle.

In at least one embodiment, cache memory subsystem 300
gives shared blocks preferential treatment with respect to
eviction from shared cache 175. In some embodiments, this
preference is achieved, at least in part, by assigning shared
blocks an age field 312 that reduces the probability of the
cache block being evicted with respect to other blocks. In at
least one embodiment, share logic 322 sets age field 312 with
the maximum age used by the cache memory subsystem for
incrementing recency-based selection and eviction policies.

In at least one embodiment, the dead block predictor logic
320 further includes UC logic 324. In at least one embodi-
ment, UC logic 324 receives a hit/miss signal 331 from core
data cache 208 indicating a tag access that hits or misses in
core data cache 208. In addition, UC logic 324 receives CS bit
310 in some embodiments. In some embodiments, it UC logic
324 detects a cache hit for a block that is valid as indicated by
CSbit310, UC logic 324 increments UC field 304 in core data
cache 208.

In some embodiments, dead block predictor logic 320 fur-
ther includes TC logic 326. In at least one embodiment, TC
logic 326 receives hit miss signal 331 from core data cache
208 and a hit/miss signal 335 from shared cache 175. In some
embodiments, when a cache access generates a miss in core
data cache 208 and a hit in shared cache 175, the block will be
recalled from shared cache 175 to core data cache 208, con-
stituting a new trip, and TC logic 326 will increment the TC
field 356 in shared cache 175.

In some embodiments, bin logic 328 is included to control
information stored in a cache access bin table 321. In at least
one embodiment, bin logic 328 performs or maintains cache
access bin table 321 by updating live and dead block count
fields 341 and 342 for each cache access bin entry 345. Dead
block predictor logic 320 updates, in some embodiments,
information in cache access bin table 321 when a change in a
block’s (UC, TC) pair is detected and when a block is evicted
from shared cache 175.

In at least one embodiment, when UC logic 324 or TC logic
326 increments the UC or TC bits of a cache block, the block
moves from one cache access bin to another. For purposes of
this discussion, a cache access bin corresponds to a (UC, TC)
pair. If a (0, 1) block, i.e., a block that has a (UC, TC) pair of
(0, 1), is accessed while valid in core data cache 208, the
block’s UC value will, in some embodiments, increment and

US 9,195,606 B2

11

the block will effectively relocate from cache access bin (0, 1)
to cache access bin (1, 1). Cache access block table 321 may
then be updated by bin logic 328 to decrement the live count
for cache access bin (0, 1) and increment the live block count
for cache access bin (1, 1). Similarly, when a cache block 351
is evicted from a shared cache 175, the eviction is reported to
bin logic 328 via an eviction signal 337 and bin logic 328 will
increment the dead block count field 342 for the applicable
cache access bin entry 345 and decrement the applicable live
block count field 341 for the same cache access bin entry 345.
To illustrate, if any (1, 1) cache block is evicted from shared
cache 175, bin logic 328 updates bin table 321 by decrement-
ing the live block count field 341 for cache access block (1, 1)
and incrementing the dead block count field 342 for the same
cache access bin (1, 1) in some embodiments.

FIG. 4 illustrates a dead block database used in conjunction
with at least one embodiment. In at least one embodiment,
cache access bin table 321 includes more information about
the cache access state of the large cache when each block that
was evicted died. In some embodiments, cache access data-
base 321 includes a first table 401 that include a detailed
profile of the bins counts at the time of death (TOD) of each
block evicted from shared cache 175. In some embodiments,
cache access table 321 includes a first table 401 containing a
log of entries corresponding to each block that was recently
evicted from [.2 where each entry include tag/address infor-
mation 412 and the bin 414 of the evicted block. In at least one
embodiment, each entry 411 further records a live block count
and dead block count across all bins at the time of the evicted
blocks death.

In at least one embodiment, a second table 402 includes the
cumulative live block count 420 and dead block count 422 for
each bin. In at least one embodiment, eviction policy for
cache memory subsystem 300 is influenced by the cache
access bin live block count and the account values. Qualita-
tively, a cache access bin that has a dead block count signifi-
cantly larger than its live block count but which also has a
substantial live block count may be the best candidate for a
dead block prediction. However, while predicting dead
blocks based solely on live block count and dead counts may
be desirable for its relative simplicity, other embodiments
may store and analyze more detailed profiling of the cache
access bin status when they block is predicted. Thus, although
FIG. 3 and FIG. 4 illustrate cache accessible information that
may be used in conjunction with at least one embodiment and
that may be preserved and employed to improve the selection
or prediction of a dead block, it will be appreciated that other
embodiments may include more, less, or different cache
access data.

FIG. 5 illustrates one embodiment of a cache block evic-
tion method used in conjunction with at least one embodi-
ment. Although shown in a particular sequence or order,
unless otherwise stated, the order of the actions can be modi-
fied. FIG. 5 is a flow diagram illustrating selected elements of
an embodiment of method 500 for implementing a cache
replacement scheme for cooperative workloads on chip-level
multi-processor caches. In some embodiments, method 500
may be executed, at least in part, to distinguish shared blocks
from private blocks in a cache replacement scheme for coop-
erative workloads on chip-level multi-core caches.

In at least one embodiment, method 500 is initiated by the
cache controller of a processor in a multi-processor system to
detect a cache block event (operation 510). In some embodi-
ments, a predetermined shared cache eviction policy is uti-
lized to determine how many times a cache block is accessed
in a private cache and how many times the cache block is
recalled from a shared cache to the private cache during a

15

20

30

40

45

55

60

12

tenure of the cache block. In at least one embodiment, opera-
tion 520 determines if the cache block is a shared block. In
some embodiments, if a determination is made that the cache
block is a shared block, the block is identified (operation 522)
as a shared block and is excluded from the eviction policy and
from cache block access data gathering, and returns to opera-
tion 510 to monitor the cache for cache block events. Other-
wise, operation 520 continues on, in some embodiments, to
operation 530 where a determination is made of an unshared
access event, such as a TC or UC. In some embodiments, if a
determination is made that an event occurred, the thread-
aware access data is updated (operation 532) for this cache
block with the (UC, TC) value and then continues to operation
510 to monitor the caches for cache block events. In some
embodiments, if a determination is made that no access event
occurred, operation 530 continues onto operation 540 where
a determination is made if a transaction requiring a cache
block eviction from the shared cache will occur. In at least one
embodiment, if an eviction occurs, the eviction database is
updated (operation 542) with the (UC, TC) value and contin-
ues to operation 510 to monitor the cache for cache block
events. [fan eviction does not occur in operation 540, then, in
some embodiments, a determination is made between the
relationship between (UC, TC) values and evictions (opera-
tion 550) and then proceeds to modify the shared cache evic-
tion policy (operation 560) based, at least in part, on the
relationship determined in operation 550.

FIG. 6 illustrates one embodiment of a cache method.
Although shown in a particular sequence or order, unless
otherwise stated, the order of the actions can be modified.
FIG. 6 is a flow diagram illustrating selected elements of an
embodiment of method 600 for implementing a cache
replacement scheme for cooperative workloads on chip-level
multi-processor caches. In some embodiments, method 600
may be executed, at least in part, to deprioritize shared cache
blocks in a cache replacement scheme for cooperative work-
loads on chip-level multi-core caches.

In some embodiments, method 600 is initiated by the cache
controller of a processor in a multi-processor system to main-
tain LL.C eviction policies (operation 610) based, at least in
part, on a relationship determined by the (UC, TC) values and
the eviction occurrence. In at least one embodiment, method
600 continues to assign a higher priority to shared block over
non-shared or private blocks so that the shared blocks are less
likely to be evicted (operation 620). In some embodiments,
prioritizing a shared block includes assigning a maximum
predetermined age to the block before insertioninthe LLC. In
at least one embodiment, the method continues where the
LLC eviction victims are chosen using the LLC eviction
policy (operation 630). In some embodiments, in operation
640, the thread-aware dead block predictors continue to make
decisions for private blocks.

FIG. 7 illustrates a simulation, emulation and fabrication of
a design implementing the disclosed techniques. Data repre-
senting a design may represent the design in a number of
manners. First, as is useful in simulations, the hardware may
be represented using a hardware description language or
another functional description language which basically pro-
vides a computerized model of how the designed hardware is
expected to perform. In at least one embodiment, the hard-
ware model 714 may be stored in a storage medium 710 such
as a computer memory so that the model may be simulated
using simulation software 712 that applies a particular test
suite to the hardware model 714 to determine if it indeed
functions as intended. In some embodiments, the simulation
software 712 is not recorded, captured or contained in the
medium.

US 9,195,606 B2

13

Additionally, a circuit level model with logic and/or tran-
sistor gates may be produced at some stages of the design
process. This model may be similarly simulated, sometimes
by dedicated hardware simulators that form the model using
programmable logic. This type of simulation, taken a degree
further, may be an emulation technique. In any case, re-
configurable hardware is another embodiment that may
involve a tangible machine readable medium storing a model
employing the disclosed techniques.

Furthermore, most designs, at some stage, reach a level of
data representing the physical placement of various devices in
the hardware model. In the case where conventional semicon-
ductor fabrication techniques are used, the data representing
the hardware model may be the data specifying the presence
or absence of various features on different mask layers for
masks used to produce the integrated circuit. Again, this data
representing the integrated circuit embodies the techniques
disclosed in that the circuitry or logic in the data can be
simulated or fabricated to perform these techniques.

In any representation of the design, the data may be stored
in any form of a tangible machine readable medium. In some
embodiments, an optical or electrical wave 740 modulated or
otherwise generated to transmit such information, a memory
730, or a magnetic or optical storage 720 such as a disc may
be the tangible machine readable medium. Any ofthese medi-
ums may “carry” the design information. The term “carry”
(e.g., atangible machine readable medium carrying informa-
tion) thus covers information stored on a storage device or
information encoded or modulated into or on to a carrier
wave. The set of bits describing the design or the particular
part of the design are (when embodied in a machine readable
medium such as a carrier or storage medium) an article that
may be sold in and of itself or used by others for further design
or fabrication.

The following pertain to further embodiments:

Embodiment 1 is a processor comprising: a plurality of
processing cores; a cache memory subsystem, comprising: a
plurality of core caches, each of the core caches correspond-
ing to one of the processing cores; a shared cache, common to
each of the processing cores; trip count (TC) logic to incre-
ment a thread-aware trip count for a block recalled from the
shared cache to a first core cache; use count (UC) logic to
increment a UC for a block responsive to each access of the
block in the first core cache; shared block logic to set a shared
block bit for a block accessed by multiple core caches; bin
logic to maintain live block counts and dead block counts for
each bin, wherein: a bin corresponds to a (UC, TC) pair; a live
block count indicates a number of valid, unshared blocks
associated with a bin; and a dead block count indicates a
number of blocks evicted from a corresponding bin; and
eviction logic to select a shared cache block to evict, from a
plurality of eviction candidates, based on at least one of: trip
count values, UC values, live bin counts, and dead bin counts.

In embodiment 2, the bin logic included in the subject
matter of embodiment 1 is optionally operable to: increment
a live block count for a first bin and decrement a live block
count for a second bin responsive to detecting a change in
(UC, TC) pair for a cache block; and increment a dead block
count for a third bin responsive to detecting an eviction of a
cache block associated with the third bin.

In embodiment 3, the subject matter of embodiment 1 can
optionally include last-to-allocate (LTA) logic to set an LTA
field for a block responsive to a first thread allocating the
block in the shared cache, wherein the LTA field identifies the
first thread.

20

25

30

35

40

45

14

In embodiment 4, the shared block logic included in the
subject matter of embodiment 3 can optionally include sets
the shared block bit responsive to detecting the LTA field
identifying a second thread.

In embodiment 5, the subject matter of embodiment 4 can
optionally include age logic to set maximum value in an age
field of the block responsive to detecting the setting of the
shared block bit.

In embodiment 6, the eviction logic included in the subject
matter of embodiment 5 is optionally operable to select the
block to evict based on a value in the age field of a block
responsive to identifying multiple eviction candidates from
the same bin.

Embodiment 7 is a cache memory eviction method com-
prising: maintaining thread-aware cache access data per
cache block in a cache memory, wherein the cache access data
is indicative of a number of times a cache block is accessed by
a first thread; and associating a cache block with one of a
plurality of bins based on cache access data values of the
cache block; selecting a cache block to evict from a plurality
of cache block candidates based, at least in part, upon the bins
with which the cache block candidates are associated.

In embodiment 8, the cache memory included in the sub-
ject matter of embodiment 7 can optionally include a shared
cache in a cache memory hierarchy, and the cache access data
included in the subject matter of embodiment 7 can optionally
include trip count (TC) data indicative of a number of times a
cache block is forwarded from the shared cache to a core
cache.

In embodiment 9, the cache access data included in the
subject matter of embodiment 8 can optionally include use
count (UC) data indicative of a number of times the cache
block was accessed by the first thread while residing in the
core cache.

In embodiment 10, the plurality of cache access bins
included in the subject matter of embodiment 9 can optionally
include bins corresponding each unique (UC, TC) pair.

In embodiment 11, the subject matter of embodiment 10
can optionally include maintaining a database of live block
counts and dead block counts for each bin and the selecting of
the cache block to evict included in the subject matter of
embodiment 10 is optionally based, at least in part, upon the
live block counts and dead block counts for the cache access.

Inembodiment 12, the subject matter of embodiment 7 can
optionally include maintaining a shared block status per
cache block, and the shared block status included in the
subject matter of embodiment 8 is optionally indicative of
whether a second thread accessed the cache block.

In embodiment 13, the subject matter of embodiment 12
can optionally include excluding shared cache blocks from
the bins responsive to identifying the cache block as a shared
cache block.

In embodiment 14, the selecting the cache block to evict
included in the subject matter of embodiment 12 can option-
ally include excluding from the plurality of cache block can-
didates, shared cache blocks.

In embodiment 15 the maintaining the shared block status
included in the subject matter of embodiment 12 can option-
ally include maintaining last thread data indicative of a last
thread to allocate the cache block.

In embodiment 16, the subject matter of embodiment 12
can optionally include assigning a maximum value to an age
attribute of a shared cache block allocated in the shared cache
responsive to evicting the shared cache block from the core
cache.

Embodiment 17 is a computer system comprising: a pro-
cessor including a core region including a plurality of pro-

US 9,195,606 B2

15

cessing cores, each processing core including a core cache,
and a shared cache shared among the core caches; a memory
controller integrated in an uncore region of the processor; and
an [/O hub connected to the processor; wherein the processor
includes dead block prediction logic to: maintain shared
block bits indicative of when a block is shared; maintain
cache access data indicative of a number of times an unshared
block is accessed; associate unshared blocks with bins based
on their cache access data; maintain live block counts and
dead block counts for each bin; and select blocks to evict
based on the cache access data, the live block counts, and the
dead block counts.

In embodiment 18, the dead block prediction logic
included in the subject matter of embodiment 17 is optionally
operable to select a block to evict from a set of candidate
blocks comprising all valid blocks associated with a first set in
the shared cache.

In embodiment 19, the cache access data included in the
subject matter of embodiment 17 can optionally include use
count data indicative of a number of times an unshared block
is accessed in the core cache and trip count data indicative of
a number of times an unshared block is recalled from the
shared cache to a first core cache.

In embodiment 20, the dead block prediction logic
included in the subject matter of embodiment 17 is optionally
operable to evict unshared blocks preferentially to shared
blocks.

In embodiment 21, the subject matter of embodiment can
optionally include: first storage to store an operating system;
an [/O hub to interface to the processor; and an I/O device to
interface to the 1I/O hub, wherein the I/O device is selected
from: a touchscreen controller, a solid state drive, and a sen-
sor.

In embodiment 22, the operating system included in the
subject matter of embodiment 21 can optionally include:
processor-executable resume module instructions to reduce
latency associated with transitioning out of a power conser-
vation state: and processor-executable connect module
instructions to maintain a currency of a dynamic application
during the power conservation state.

In embodiment 23, the subject matter of any one of
embodiments 1 or 2 can optionally include last-to-allocate
(LTA) logic to set an LTA field for a block responsive to a first
thread allocating the block in the shared cache, wherein the
LTA field identifies the first thread.

In embodiment 24, the cache memory eviction method
included in the subject matter of any one of embodiments 8,
9, 10, or 11, can optionally include maintaining a shared
block status per cache block, wherein the shared block status
is indicative of whether a second thread accessed the cache
block.

In embodiment 25, the subject matter of any one of
embodiments 17, 18, 19, or 20 can optionally include: first
storage to store an operating system; an I/O hub to interface to
the processor; and an I/O device to interface to the /O hub,
wherein the I/O device is selected from: a touchscreen con-
troller, a solid state drive, and a sensor.

To the maximum extent allowed by law, the scope of the
present disclosure is to be determined by the broadest per-
missible interpretation of the following claims and their
equivalents, and shall not be restricted or limited to the spe-
cific embodiments described in the foregoing detailed
description.

What is claimed is:

1. A processor, comprising:

a plurality of processing cores;

a cache memory subsystem, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

16

a plurality of core caches, each of the core caches cor-
responding to one of the processing cores;

a shared cache, common to each of the processing cores;

trip count (TC) logic to update a thread-aware trip count
for a block recalled from the shared cache to a first
core cache;

use count (UC) logic to update a UC for a block respon-
sive to each access of the block in the first core cache;

shared block logic to set a shared block bit for a block
accessed by multiple core caches;

bin logic to maintain live block counts and dead block
counts for each bin, wherein:
a bin corresponds to a (UC, TC) pair;
the live block count to indicate a number of valid,

unshared blocks associated with a bin; and
the dead block count to indicate a number of blocks
evicted from a corresponding bin; and
eviction logic to select a shared cache block to evict,
from a plurality of eviction candidates, based on at
least one of: trip count values, UC values, live bin
counts, and dead bin counts.
2. The processor of claim 1, wherein the bin logic is oper-
able to:
increment a live block count for a first bin and decrement a
live block count for a second bin responsive to detection
of a change in (UC, TC) pair for a cache block; and

increment a dead block count for a third bin responsive to
detection of an eviction of a cache block associated with
the third bin.

3. The processor of claim 1, further comprising:

last-to-allocate (LTA) logic to set an LTA field for a block

responsive to a first thread allocation of the block in the
shared cache, wherein the LTA field identifies the first
thread.

4. The processor of claim 3, wherein the shared block logic
is to set the shared block bit responsive to detection that the
LTA field identifies a second thread.

5. The processor of claim 4, further comprising:

age logic to set maximum value in an age field of the block

responsive to detection that the shared block bit is set.

6. The processor of claim 5, wherein the eviction logic is
operable to select the block to evict based on a value in the age
field of a block responsive to identification of multiple evic-
tion candidates from the same bin.

7. A method, comprising:

maintaining thread-aware cache access data per cache

block in a cache memory, wherein the cache access data
is indicative of a number of times a cache block is
accessed by a first thread;

maintaining a shared block status per cache block, wherein

the shared block status is indicative of whether a second
thread accessed the cache block;

associating a cache block with one of a plurality of bins

based on cache access data values of the cache block,
and excluding shared cache blocks from the bins respon-
sive to identifying the cache block as a shared cache
block;

selecting a cache block to evict from a plurality of cache

block candidates based, at least in part, upon the bins
with which the cache block candidates are associated.

8. The method of claim 7, wherein the cache memory
comprises a shared cache in a cache memory hierarchy, and
wherein the cache access data includes trip count (TC) data
indicative of a number of times a cache block is forwarded
from the shared cache to a core cache.

US 9,195,606 B2

17

9. The method of claim 8, wherein the cache access data
includes use count (UC) data indicative of a number of times
the cache block was accessed by the first thread while residing
in the core cache.

10. The method of claim 9, wherein the plurality of bins
include bins corresponding to each unique (UC, TC) pair.

11. The method of claim 10, further comprising:

maintaining a database of live block counts and dead block

counts for each bin, wherein the selecting of the cache
block to evictis based, atleast in part, upon the live block
counts and dead block counts in the database.

12. The method of claim 7, wherein selecting the cache
block to evict includes, excluding from the plurality of cache
block candidates, shared cache blocks.

13. The method of claim 7, wherein maintaining the shared
block status includes maintaining last thread data indicative
of a last thread to allocate the cache block.

14. The method of claim 7, further comprising: assigning a
maximum value to an age attribute of a shared cache block
allocated in the shared cache responsive to evicting the shared
cache block from the core cache.

15. A computer system, comprising:

aprocessor including a core region including a plurality of

processing cores, each processing core including a core
cache, and a shared cache shared among the core caches;

a memory controller integrated in an uncore region of the

processor; and

an 1/O hub connected to the processor; wherein the proces-

sor includes dead block prediction logic to:

maintain shared block bits indicative of when a block is
shared by a first thread and a second thread;

maintain cache access data indicative of a number of
times an unshared block is accessed;

20

25

18

associate unshared blocks with bins based on their cache
access data;

maintain live block counts and dead block counts for
each bin; and

selectunshared blocks to evict based on the cache access
data, the live block counts, and the dead block counts.

16. The computer system of claim 15, wherein the dead
block prediction logic is operable to select a block to evict
from a set of candidate blocks comprising all valid blocks
associated with a first set in the shared cache.

17. The computer system of claim 15, wherein the cache
access data includes use count data indicative of a number of
times an unshared block is accessed in the core cache and trip
count data indicative of a number of times an unshared block
is recalled from the shared cache to a first core cache.

18. The computer system of claim 15, wherein the dead
block prediction logic is operable to evict unshared blocks
preferentially to shared blocks.

19. The computer system of claim 15, further comprising:

first storage to store an operating system;

an 1/O device to interface to the I/O hub, wherein the I/O

device is selected from: a touchscreen controller, a solid
state drive, and a sensor.

20. The computer system of claim 19, wherein the operat-
ing system includes:

processor-executable resume module instructions to

reduce latency associated with transitioning out of a
power conservation state: and

processor-executable connect module instructions to

maintain a currency of a dynamic application during the
power conservation state.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,195,606 B2 Page 1 of 1
APPLICATION NO. 1 13/976248

DATED : November 24, 2015

INVENTORC(S) : Ragavendra Natarajan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On The Title Page, Item (72) “Jayesh Guar” should be --Jayesh Gaur--.

Signed and Sealed this
Twenty-second Day of March, 2016

Twcbatle Z Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

